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The Monte Carlo (MC) method is an important tool in sampling the state space of a chosen
statistical ensemble. It allows the study of thermodynamic averages of configurational properties by
generating “moves” in a system and accepting or rejecting the thus generated new state depending
on the energy of the new system and/or a random choice. These moves are intrinsically sequential
and complicate parallel implementation. We propose a method which allows the parallel generation
of MC moves, and which is especially useful for simulations with unavoidably low acceptance rates,

such as for long chain molecules.

PACS number(s): 02.70.Lq, 83.80.Pc

I. INTRODUCTION

At first sight, the title of this paper “Parallel Monte
Carlo simulations” appears to be a contradiction in
terms, since Monte Carlo (MC) is known to be an in-
trinsically sequential process. It turns out that this ap-
parent fundamental impossibility can be circumvented by
introducing an algorithm that allows for straightforward
parallelization.

The Monte Carlo method was applied for the first time
by Metropolis et al. for equation of state calculations [1].
The method studies thermodynamic averages of configu-
rational properties by generating new states of a system
using certain moves from an old state. If the potential
energy U of the new state is lower than that of the old
state, the new state is “accepted.” If not, the new state
is accepted with a probability exp(—AU/kgT). Averag-
ing over the properties of the accepted states, and taking
the acceptance ratios into account, provides the wanted
information.

A very common “move” is the random displacement of
a random particle over a certain distance in the z, y and
z dimension. If this displacement is small, the new state
will hardly differ from the old state, yielding a high prob-
ability of acceptance, at the cost of poor sampling of the
state space. Large moves suffer from the opposite: good
sampling, but low acceptance rates. For chain molecules,
the standard MC method becomes rapidly more pro-
hibitive for larger chain length, in particular for the lig-
uid phase. The chance of acceptance for a new state after
moving a complete chain is almost zero. This problem
can be solved by “growing” the chains judiciously, i.e., in
the direction of a favorable energy state. The bias thus
introduced can be taken into account properly, which
is the essence of the configurational-bias MC (CBMC)
method [2-4]. A recent application can be found in the
study of critical properties of n alkanes [5], where the
combination of CBMC and the Gibbs-ensemble method
allows the study of the vapor-liquid curve of alkanes up
to C4s. However, longer chains do imply lower accep-
tance rates, with a concomitant need for more computing
power.
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At this point, application of parallel computers can
constitute a solution. They have been applied success-
fully in many other fields, such as in molecular dynamics
(MD) calculations [6,7]. An important ingredient for ef-
ficient parallelization is the availability of many portions
of independent work. For MD, these portions can be
identified in more than one way, the efficiency depending
on the system under study [8-10]. Monte Carlo appears
to be intrinsically sequential, since the generation of a
new move depends on the previously accepted state and
cannot be performed independently in a straightforward
way. In this work, we present a Monte Carlo algorithm
in which new moves are generated throughout the sys-
tem and then combined. The bias introduced is correctly
taken into account by a method corresponding closely to
the method of CBMC. We believe that the method allows
efficient parallel implementation, and exemplify this with
results from a sequential study. First, we explain some
of the parallel techniques proposed in the literature.

II. CONVENTIONAL PARALLEL ALGORITHMS

Various parallel Monte Carlo algorithms have been
proposed in the literature. One can make the following
classification: (1) Parallel moves in independent regions;
(2) hybrid Monte Carlo method; (3) task farming; and
(4) parallel energy calculation. Parallel moves in inde-
pendent regions was one of the first references to parallel
MC [11]. It provides an example of the use of an ul-
trashort range potential: on a regular lattice particles
(“spins”) only interact with their six nearest neighbors.
This makes it straightforward to identify well-separated
regions: when placing the spins on a checkerboard, all
particles on the same color can be updated simultane-
ously. For continuum systems, a similar approach can
be used for models with sufficiently short ranged poten-
tials, such that a change in the location of a particle in
one region does not have an effect on the energy of any
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particle in another region. A restriction is that the gener-
ated moves and the range of interactions should not cover
large distances. Therefore, chain molecules and systems
with long range forces are excluded from this approach.

Another approach is the use of the hybrid Monte Carlo
(HMC) method [12]. In this method velocities are drawn
from a Gaussian distribution and subsequently used for
solving the equations of motion. In this respect, the
method is very similar to molecular dynamics and all
parallel algorithms developed for MD can be applied
straightforwardly. A disadvantage of HMC, in contrast
to MD, is that no information on time dependent proper-
ties can be obtained. In addition, the time steps used in
both techniques are similar, therefore in itself HMC of-
fers no particular advantage over MD with a Nosé-Hoover
thermostat [13,14].

A rather coarse form of parallelism is farming of inde-
pendent tasks. It is used in [15], where the MC consists
of many independent high energy physics computations,
and the independence is used for parallelization. In [16],
parallelism is introduced by performing calculations with
different scales of length and energy parameters, which
provides valuable information about cancellation of ran-
dom sampling errors. The parallelism is thus introduced
at the level of complete simulations, not as a means to
speed up one single run. Therefore, it does not scale
very well. In [17], MC is used to simulate the history of
many particles traveling through a certain geometry for
performing a radiation transport analysis. In order to
sample correctly, many particles need to be traced, but
the individual particles are completely independent from
each other. Parallelization is straightforward. A similar
approach is followed in [18,19]. However, this form of
parallelism has no close analog in MC simulations with
interacting particles.

In [20], several types of parallelization of the Metropo-
lis method are discussed. In the first type, the energy of
a trial conformation is computed in parallel, while a mas-
ter processor handles the actual moves. This appeared to
be rather inefficient due to a low “computation to com-
munication ratio.” An improvement was made by the
use of a “systolic loop,” where each particle is displaced
in turn, and all processors continually compute energies
between displaced particles and their own. Communica-
tions are arranged such, that idle time is minimized. In
another approach discussed in [20], the simulation of S
trial moves is done by running @ independent batches of
S/Q moves, the independent batches simply use different
random number seeds (actually, a form of farming). The
main disadvantage is the need for (sequential) equilibra-
tion. For large systems, equilibration can be a significant
part of the simulation. Their conclusion was that the
choice of method should depend on the number of pro-
cessors available.

In summary, we find that the literature does not de-
scribe a method in which parallelism is used efficiently to
decrease the turnaround time of a single simulation. The
sequential nature of generating moves one after another
in the Metropolis Monte Carlo algorithm indeed seems
difficult to parallelize. In the next section, we will show
how this problem can be solved.

III. THE PARALLEL MONTE CARLO
TECHNIQUE

In the following we propose an algorithm to perform
Monte Carlo moves in parallel, which in Sec. IV will be
tested in the simulation of alkanes in zeolites. Note that,
although we introduce the method for chain molecules,
it is not restricted to this case.

A. Basic principles

Repeatedly, the following steps are executed.

(1) In choosing a new chain, g trial conformations of
the chain are generated simultaneously using CBMC. For
each of the chain conformations i, the Rosenbluth weight
is calculated:

W (2) = exp(—Buq)W*(7)

M k
= exp(—pun) [[ S expl-Bu(i)], (1)

1=2j=1

where v; is the energy of atom [ of chain ¢ with M atoms,
the sum is over the k trial orientations used in the CBMC
scheme. Note that the probability that a chain in con-
formation 7 is generated is [2]

o _ exp[-AU(1)]

= 2
ri) = R, )
where U(i) = Egl u; is the total energy of the chain in
conformation 3.

(2) We define

Z = Z W), (3)

and out of the g conformations, we select one chain n,
where each chain ¢ has the probability

. W(s
poli) = 1. ()
Furthermore, we define
R=Z-W(n). (5)

(3) Out of the old configuration, one chain o is selected
at random and calculated is

Z'=W(o)+ R, (6)

where Z' differs from Z in that W(n) is replaced by W (o).
The Rosenbluth factor of the old conformation is defined
by

W (o) = exp[—pPu1(0)|W*(0). (7)

Note that in the calculation of the Rosenbluth factor of
the atoms of the old conformation one of the k trial ori-
entations is the actual position of the atom.
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(4) The move of the selected chain o to the new confor-
mation n [which has been selected in step (2)] is accepted
with a probability

Pace(0 = n) = min(1,Z2/2"). (8)

In this algorithm, g trial conformations are generated
in parallel. Out of these, the most favorable conforma-
tion has the highest probability of being selected. This
introduces a bias in the sampling scheme. In the Ap-
pendix, it is proven that the bias is removed by the use
of acceptance rule (8).

B. Placing the first atom in parallel

Like in the original CBMC scheme, the growing of a
chain only proceeds if the first particle is placed success-
fully. In very low-density systems this will, in general,
be no problem, but in many other cases this success rate
can be quite low. In a parallel implementation where all
processors grow chains simultaneously, this can imply a
substantial load imbalance with respect to the distribu-
tion of work, since some processors could stop growing
chains after unsuccessfully placing the the first atom. It
would, therefore, be better to increase the chance of suc-
cessfully placing this particle a priori. Interestingly, this
can be done in the same spirit as the algorithm presented
above, by placing many “first particles” and choosing the
most favorable. We modify the algorithm as follows.

(1) For each chain i, we generate f random positions
for placing the first atom, and we calculate for each of
these the energy uy(m;).

(2) For each chain 7, we define

f

wi(i) = " expl—pur(my)], (9)

m;=1

and out of the f “trial firsts,” we select one atom h;,
where each atom m; has the probability

exp[—fui(mi)]

01 (0) (10)

ps(m;) =

(3) The selected first atom h; is used to grow the rest
of the chain of M atoms using the configurational-bias
Monte Carlo algorithm. The probability that a confor-
mation is grown is given by

_ S, exp[—Bu(i)] _ T, exp[—fu(i)]
I, wi(i) (1)

where w;(2) is the Rosenbluth factor for atom . For each
of the chains, we calculate

pc(i) ’ (11)

W (i) = wi(5)W* (7). (12)
(4) We define

Z2=3 W), (13)

and out of the g conformations we select one chain n,
where each chain 7 has the probability

poli) = 1. (14)
Furthermore, we define
R=2Z-W(n), (15)
and
= s (n) — exp[~Bus (k)] (16)

Note that h, is the first atom of the selected chain n.
(5) Out of the old configuration, one chain o is selected
at random and we calculate

Z' =W (o) + R, (17)
where the Rosenbluth factor of the old conformation is
W (o) = wi(0)W?*(0) = (exp[—PBus(0)] + r)W*(0) , (18)

in which u;(0) is the energy of the first atom of the old
configuration.
(6) The move is accepted with the probability

Pace(0 — 1) = min (1, ;) : (19)

In the Appendix, it is proven that this algorithm samples
the correct distribution.

IV. APPLICATION OF THE PARALLEL MONTE
CARLO TECHNIQUE

In the previous section, the principles of the parallel
Monte Carlo technique have been described. An im-
portant question is whether this approach, in a practi-
cal parallel application, indeed results in the desired in-
crease of performance. To test this, we have performed
some sequential simulations (parallel simulations will be
presented in a later paper). As a test system, we have
chosen alkanes adsorbed in zeolites. Zeolites are micro-
porous crystalline materials, and their pores are accessi-
ble to alkanes. Since zeolites are used as catalytic ma-
terials in petrochemical applications, it is of interest to
have information on the behavior of alkanes adsorbed in
zeolites. Simulations appear to be ideally suited to ob-
tain this information [21]. Smit and Siepmann [22] have
used the CBMC technique to study the adsorption of
n alkanes in the zeolite silicalite. The simulations re-
ported in [22] consist of the following four steps: ran-
dom displacement of a molecule, random rotation of a
molecule, regrowing of part of the molecule, and inser-
tion of a molecule at a random position. The first three
MC moves are introduced to change the (local) conforma-
tion of the molecules. If one would restrict the algorithm
to only such types of moves, the method would be equiv-
alent to molecular dynamics in efficiency. From a parallel
computing point of view, hybrid Monte Carlo [12] pro-
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vides a good alternative for the first three steps. The
last MC step, the insertion at a random position, results
in a very efficient sampling, since large jumps in phase
space are made. Below we focus on the parallel comput-
ing aspects of this step using the algorithm as developed
in the previous section. Details on the zeolite structure
and model can be found in [22]. Note that the insertion
of a molecule is also one of the time consuming steps
in grand-canonical and Gibbs-ensemble simulations [23].
The application of our parallel Monte Carlo technique, is
therefore, by no means limited to zeolites.

A. Sequential implementation

We have realized a sequential implementation of the
method. The average energies of pentane in silicalite for
varying g (number of chains grown in parallel) and f
(number of “first” atoms for each chain) are given in Ta-
ble I. It is important to note that, within the accuracy
of the data, the results are indeed independent of these
parameters. Furthermore, the results show that the per-
centage of accepted moves increases significantly with in-
creasing g and f. A full analysis of the performance is
given in Sec. IV B.

It is instructive to consider a simulation in which the
bias is not removed in the acceptance rule. We take the
naive approach that the correction is small and that we

TABLE 1. The energies and acceptance probability of pen-
tane in silicalite as a function of g (the number of chains
grown in parallel) and f (the number of trials for the first
atom). Nmc is the total number of Monte Carlo moves (the
insertion of a molecule at a random position), (U)p is the
average total energy of the pentane molecule, (U), is the av-
erage pentane-zeolite energy, and “Acc.” is the percentage
of accepted moves. The subscript gives an estimate of the
accuracy of the results, so 5.363 means 5.36 = 0.03. 7 equals
the total execution time (CPU seconds) of the run on an IBM
RS6000/560H workstation.

9 f  Nwmc (U)»p U)r  Acc. () T
800 1 4000 —5919;3 —678713 81.8 12473
400 1 4000 —592550 —678615 71.4 6231
160 1 10000 —5914,6 —679111 52.0 6412

80 1 20000 —5941,7 —680712 34.8 6610

40 1 40000 —5954,7 —6812:2 21.1 7142

20 1 80000 —5906,6 —677812 12.5 8089

10 1 80000 —595720 —680714 6.2 4470

5 1 160000 —5910;9 —678214 3.4 4923
2 1 400000 —5918;9 —678012 1.4 5238
1 1 800000 —59362¢9 —6789:7 0.7 5393
5 200 16000 —5942,7 —680311 36.7 6572
5 100 16000 —5940,3 —6798g 36.9 4524
5 40 16000 —5918;5 —678011 34.6 3424
5 20 16000 —5931,9 —679514 28.7 2931
5 15 16000 —5923,9 —678914 26.2 2681
5 10 16000 —592152 —6781;5 20.5 2307
5 5 16000 —595729 —679519 13.1 1619
5 2 16000 —594539 —67642¢ 6.3 867
5 1 16000 —592448 —683933 3.1 495

can select the trial conformation using Eq. (4), but we
use instead of Eq. (8) acceptance rule

Pacc(0 = n) = min (1, W(n)/W (o)) . (20)

The results of these simulations are presented in Fig. 1,
where the average energies as calculated by the correct
scheme are compared with the ones obtained with the in-
correct scheme. In contrast to the correct method, the re-
sults are not independent of the number of chains grown
in parallel and show a systematic drift.

B. Sequential performance

The proposed algorithm has three parameters which
influence the performance. The first one (introduced by
CBMUC) is k, which determines the number of trial orien-
tations probed for each atom (but the first) of the chain.
Optimum values for this parameter have been studied in
detail by Mooij [24]. We have introduced two new pa-
rameters: the number of chains grown in parallel (g) and
the number of probed first positions (f). Fixing all vari-
ables to one yields the original random insertion method,
which for chain molecules is totally infeasible. However,
using values that are too high wastes computer time on
probes which will not be used anyway. Below, we de-
rive expressions from which the optimum values can be
obtained.

In these simulations, the configurations generated (and
accepted) are uncorrelated. For this reason, the average
time 7, needed to accept a configuration as a function
of f and g for a given system is a good measure for the
performance of the algorithm. In Fig. 2, we plotted this
mean time between acceptance for methane. In this se-
quential implementation, we see that for small values of
g, To does not increase. This suggests that probing ten
methane molecules in parallel indeed speeds up computa-

R WS S S-S W
Q__é ? ¢ ¢ ¢ T ]
-6000 [ + -
-6100 [ + + -
-6200 h e ...;10 e 1(1)0 N 1000
g

FIG. 1. Comparison of the total energy of pentane in sili-
calite as calculated from the sampling without the correction
for the bias () with the correct sampling scheme (o). g is the
number of chains grown in parallel and f = 1. The horizon-
tal line is the average energy as calculated from the correct
results.
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FIG. 2. Average time to acceptance 7,(g) for methane (o)
and pentane (O) in silicalite for varying number of molecules
g placed in parallel. The data are taken from Tables I and II.

tion with a factor of 10. For much larger values of g, the
probability that several acceptable configurations are be-
ing generated increases, yet only one new configuration
can be accepted per step. For example, for ¢ = 160,
To = 2.96, which is 5.5 times more than 7, = 0.538 valid
for g = 1. A parallel implementation can, therefore, at
best reach a speedup of 29 (= 160/5.5).

For pentane, Fig. 2 shows that 7,(g) decreases some-
what with increasing g, so surprisingly this parallel ap-
proach is also more efficient for a sequential implementa-
tion. The reason for this is that in the parallel scheme,
the “optimal” configuration is selected and only for this
configuration is the Rosenbluth factor of the old con-
figuration [Eq. (7)] calculated and the acceptance test
performed. In the original CBMC version, not only the
optimal configuration is tested for acceptance, but also
configurations which have a very low probability of ac-
ceptance. For each of these configurations the Rosen-
bluth factor of the old configuration has to be calculated.
For this particular system the Rosenbluth factor of the
old configuration could be stored and used until a move
is accepted. However, normally other MC moves would
change the conformation of the molecule or surrounding
molecules, necessitating recalculation of the Rosenbluth
factor each step.

For pentane, the influence of increasing the number of
first atoms placed f on the average time to acceptance
T, for various values of g is shown in Fig. 3. For large
values of g, the probability of generating an acceptable
configuration is high, and, therefore, there is no need for
increasing f. Nevertheless, for small values of g, increas-
ing f has a significant effect and reduces the CPU time
by 30%.

For practical applications, one would like to use the
optimum values of g and f, i.e., those which give max-
imum probability of acceptance for a minimum amount
of CPU time. Therefore, we have to find the minimum
of

Ta(gaf)=Tm(gaf)/P(gaf)7 (21)

3

7(9.f)

0 " ot a2 sl
1 10

sl
100
f
FIG. 3. Average time to acceptance 74(g, f) for pentane in
silicalite for a fixed number of chains grown in parallel g as a
function of the number of first atoms probed f. Time in sec-
onds for simulations on an IBM RS6000/560H. The symbols

are results from simulations and the lines are the predictions
of Eq. (21).

in which 7,,(g, f) denotes the CPU time needed for one
MC move, and P(g, f) denotes the probability of accep-
tance of a move.

We assume the following form for 7,,,

Tm(g7 f) = Cng + clgF(f) + C1. (22)

This form is based on a term for probing gf “first” par-
ticles and a term for growing g new chains and one old
chain. A chain is only grown if the first atom is success-
fully placed. This success rate is given by the function

F(.f)7
F(fy=1-x", (23)

where x is the probability of overlap of a “first” particle
with one of the zeolite atoms. For this particular system,
we found Eq. (23) to be accurate within one percent with
x = 0.87. Equation (22) with ¢o = 0.00028 and c¢; =
0.028 describes the observed timings with an accuracy
of ten percent, for the smallest values of g and f the
accuracy is less.

Next, we have to derive an expression of the acceptance
probability as a function of g and f. For fixed f, we
can use the following approximation. From acceptance
rule (19) and equations (15) and (16), it follows that

Z W(n)+ R
(7)=(wio+n)
g (W)

(W(o)) + (g — 1) (W)

_ gPs(1)
1+ (g—1)Ps(1)°

Ps(9)

(24)

where (W) denotes the average Rosenbluth factor of a
single chain and (W (o)) denotes the average Rosenbluth
factor of the old configuration. If g = 1, we derive the
following expression for acceptance:
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1565
_ Jwi(n)W*(n)
N <w1 W*(o) >
~ (wl(n))( *(n))
(w1(0))(W*(0))
f {exp[—PBus(m)]) (W*(n)) (25)

= Uexp[=Bur (0)) + (F — 1) {exp[—Bus (m)]) (W*(0))

We can define

(exp[—Bus(m)]) (W*(n))

Py=1(1) ~ (exp[—Puy(0)]) (W*(0))

(26)

and

_ (exp[—Bus(m)))
(exp[—Pu1(0)])
Note that w can be assumed to be equal to the acceptance

of methane in the same silicalite with f = 1,9 = 1, or
can be calculated directly from the simulation. In our

(27)

case, w = 0.044. Substitution of (26) and (27) in (25)
yields
~ ng=1(1)

Given g and f, Ps(1) = Py=1(f) is computed using (28)
after which Pf(g) yields the required acceptance ratio
P(g, f) using (24). We found the accuracy of this pre-
diction of P(g, f) to be within 25%.

The solid lines in Fig. 3 represent the prediction of
Ta(9g, f), which agree well with the times obtained from
the simulations. The optimum values for ¢ and f are
found by minimizing 7,(g, f). It follows that g = 2 and
f = 53 (while k was set to 6), resulting in a gain of 40%
as compared to the conventional approach (g = f = 1).

C. Estimate of parallel performance

The possibility to grow chains in parallel does not nec-
essarily imply that actually doing so results in increased

TABLE II. The energies and acceptance probability of
methane in silicalite as a function of g, f = 1. See also
the caption of Table I. The runs are performed on a Silicon
Graphics Personal Iris workstation.

g Nwmc U)p U). Acc. (%) T
400 8000 —13583 —13583 98.175 55794
160 20000 —13602 —13602 95.175 56304

80 40000 —1357, —1357; 89.237 56814

40 80000 —1359, —1359, 75.925 58200

20 160000 —1359; —1359; 55.212 60396

10 320000 —13611 —1361, 34.656 63360

5 640000 —1359, —1359, 19.702 66156
2 1600000 —13604 —13604 8.465 70860
1 3200000 —1360, —1360, 4.363 75138

[

performance. An important aspect is the load balance,
which in this case is determined for a great part by the
success (overlap-nonoverlap) of placing the first particle.
We introduced the parameter f to increase this chance
of success, but if every processor grows a small number
of chains (s), there is still a chance of substantial load
imbalance. Usually, increasing the amount of work per
processor helps, but here the effect of this increase on the
performance P(g, f) and, therefore, on 7,(g, f) (where g
equals the number of processors Q times s) has to be
taken into account. Using equation (22) of the previous
section, we can estimate the speedup as follows. Recall
that in the sequential case, the amount of work scales
linearly with the expected value of gF'(f). On a proces-
sor network of @@ processors, where every processor tries
to grow s chains (g = sQ), the total execution time is
determined by the processor with the most work, there-
fore, the term gF(f) has to be replaced by the expected
maximum over Q stochastic values sF(f). Since these Q
events are uncorrelated, we can write,

8

Emax{sF(f)} =s+1=3 [C(F(f),k, )], (29)
k=0
k
etk =3 (5)ra-n (30)

Equation (29) is proven in the Appendix. This implies
that the expected total amount of time 74(s, f, Q) needed
for growing s chains per processor on a Q-processor net-
work becomes [see Eq. (22)]

Tq(5, £,Q) = cosf + er(Bmax{sF(f)}) + 1, (31)

and the resulting prediction for average time to accept a
new configuration becomes

Tr(safaQ) :Tq(57f1Q)/P(SQ7f)' (32)

For a given processor network size ), we can deter-
mine the minimum value of 7.(s, f,Q), given by, say,
7.(5Q, f@, Q). The expected speedup S(Q) then becomes

S(Q) :Tr(slvflvl)/Tr(sQan’Q)' (33)

For two alkanes, the expected speedup is shown in
Fig. 4. We see that for the pentane simulations, the
speedup is slightly more than 5 using 20 processors. For
larger chains, the expected speedup becomes better, as
is demonstrated by the results for dodecane.
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&) ——— dodecane -
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Q

FIG. 4. Speedup S(Q) as a function of network size Q,
as predicted by Eq. (33). The solid line represents optimum
speedup.

V. CONCLUDING REMARKS

In this work, we have generalized the metropolis Monte
Carlo algorithm to generate moves in parallel and se-
lect the most favorable with the highest possibility. It
is proven that the resulting bias is removed by appropri-
ate acceptance rules. The resulting algorithm allows for
straightforward parallelization.

We have demonstrated the feasibility of the method by
simulations of alkanes adsorbed in zeolites. These tests
show that the method is particularly useful at conditions
where conventional moves are unlikely to be accepted.
It is important to note that precisely under these condi-
tions, simulations tend to take a large amount of CPU
time, and parallel computing may help to reduce this.
Surprisingly, the parallel approach also reduces compu-
tation time on a sequential computer. Depending on the
application, we found a gain of 40%.

This algorithm provides a way to perform any Monte
Carlo move in parallel. However, not every type of move
is expected to be efficient. For example, random (small)
displacement can be performed much more efficiently in
parallel with the hybrid Monte Carlo method, which
moves all molecules at the same time. In the general
case, the most efficient approach is a combination of var-
ious Monte Carlo moves, for instance, using the hybrid
Monte Carlo method for local changes in conformations
and the present method for random insertions.

APPENDIX A: PROOF OF CORRECTNESS
OF SAMPLING SCHEMES

In this Appendix, it is proven that the algorithms in-
troduced in this work generate configurations that are
distributed according to a Boltzmann distribution, i.e.,
the probability of finding conformation 7 is given by

N (i) o< exp[-BU ()], (A1)

where U (2) is the total energy of configuration i.

1. Algorithm of Sec. IIT A

The standard technique of proof that a Markov process
samples the correct distribution is to show that detailed
balance is obeyed, i.e., the flow of configurations going
from o to n should equal the reverse,

K(o—n)=K(n—o). (A2)
The flow from o to n is the product of the probability
of being in state o, the probability of generating state =,
and the probability of acceptance Pacc:
K(o— n) =N(0)p(o = n)Pacc(0 = n). (A3)
Note that a configuration n or o can be generated in an
infinite number of ways, see for example Fig. 5. Let us
denote a set of g trial conformations by

(b}, = (bs, bay..., by).

The set of all sets {b}, which include conformation n is
denoted by

(A4)

{ba} = {{b},lbn € {b}4} -

Every element {b}, of {b,} can be written as (b,,b*),
which defines b*. For the detailed balance condition, we
have to sum over all sets in {b,} that generate conforma-
tion n,

(A3)

K(o — n) =N(o) Z p(o = n|i)Pacc(0 — nji) . (A6)
i€{bn}

Note that the probability of generating this conformation
and its acceptance depend on the particular set of trial
conformations.

The probability of generating state n is the product of
generating a chain in this state (2) and the probability

oo

&

oo
&K
%bO,

8(23 bn=b1

FIG. 5. Four different sets of trial conformations {b}, with
k = 4 that each can lead to a move from configuration b,
to bn.



51 PARALLEL MONTE CARLO SIMULATIONS 1567

that this conformation is selected (4),

p(0 = 1|(bn,6%)) = pc(bn)pp((bn, b))
exp[—BU(b,)] W (bn)
W(b.)  Z((bn,b*))
exp[—ﬂU(bn)] _ exp[—ﬁU(bn)]
Z((bn,0%)) — W(ba) + R(b*) "
(A7)

In the last equality, we have used the fact the R does
not depend on the selected orientation. Similarly, for the
reverse move, we can write

«y _ exp[=BU(b,)] _ exp[-BU(bo)]
p(n = o|(bo,b%)) = Z'((b,,6%))  W(bo) + R(b*) "

(A8)

Substitutions of equations (A1), (A6), (A7), and (A8) in
the equation for detailed balance (A2) gives

Pacc(o = nfi)
Z Z(3) - Z

Pace(n = 0l3)
zG)

ie{b.} i€{bo}
Pacc(0 — n] Pace(n — 0|7)
—_— A9
G{Zb} W(b ) + R(b}) Z W(bo) + R(b;) (A9)

Note that for each element of the sum on the left-hand
side, there is a corresponding element on the right-hand
side with the same b*. The above equality is certainly
obeyed if each of these two corresponding elements are
equal, viz.

Pacc(0 = n|b*) _ Pace(n — o[b*)

= . Al10
W(b) + R ~ W(bs) + R(o") (A10)
This gives, as a condition for the acceptance rule,
Pacc(o = n|b*)  Z(b*)
Paceln > of6*) — Z/(5%) " (AL1)

In the equations above, we have imposed a much stronger
condition “super-detailed balance.” This has as an im-
portant practical advantage that, per definition, for Z’
[Eq. (6)] one has to use the same set of additional trial
orientations b* as is used for Z. One, therefore, has to
calculate only the Rosenbluth factor W (o) for the old
conformation. It is straightforward to show that the ac-
ceptance rule used in our algorithm [Eq. (8)] obeys this
condition. This proves that indeed the correct distribu-
tion is sampled by our algorithm.

2. The algorithm of Sec. III B

In this version of the algorithm, the first segment is
selected for each of the chains out of a set of trial po-
sitions. The probability that a particular conformation
n is generated is the product of the probabilities of the
first segment to be selected [Eq. (10)], of the remainder
of the chain to be generated [Eq. (11)], and of this con-

figuration to be selected out of the g chains [Eq. (14)].
This probability is given by

p(o = n) = pspcpp
exp[—Bu1(n)] E{‘iz exp[—LBu;(n)] W (n)

wy (n) W*(n) Z
_exp[—pU(n)]
= (A12)

For the reverse move, we have

exp[— ﬁU(o)]

= (A13)

p(n — o) =
Imposing super-detailed balance gives, as a condition for
the acceptance rule,

Pacc(o — n) Z
A A = 4
Pace(n 3 0) 2 (A14)
Since Eq. (19) obeys this equation, we have proven that
indeed distribution (A1) is sampled correctly.

APPENDIX B: PROOF OF EQ. (29)

Given are @ stochastic variables a,...aq, identical
and independent distributed, and each having values be-
tween 0 and s. The variable a; specifies the amount of
work of processor i. Since we assume that the amount
of work is linearly related to the completion time, a; is
also a measure for the execution time of processor . The
parallel execution time can be determined by consider-
ing the processor with the most work. Hence, we have
to determine the expected maximum of the @ stochastic
variables a;.

Emax{a;} = E kProb(max{a;} = k) .
k=0 ‘

It is straightforward to show that the right-hand side of
the above equation equals

s—1

s — Z Prob(m?.x{ai} <k).

k=0

Since the @ stochastic variables are all independent, we
have

s—1
Emax{a;} =s— Z Prob(a < k)<
t k=0

=s+1 —ZProb(a <k)?,
k=0

where the stochastic variable a denotes the amount of
work of a processor.

Note that this equation is valia for any probability
distribution Prob. If we apply the above result to our
problem, i.e., the growing of chains in parallel, then the
amount of work of a processor equals the number of
chains that have successfully been grown. The proba-
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bility to grow one chain successfully is F(f) [Eq. (23)].
For this problem, the probability to grow k chains suc-
cessfully given s attempts is binomially distributed, since
each attempt is independent of other attempts. Conse-
quently,

Prob(a < k) =C(F(f),k,s) ,

k=Y (j)f"(l -9
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